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About this document

This document is an .Rmd document and can be found
at:

github.com/ggloor/paper_supplements/Frontiers_CoDa_2017

The document is the supplement and companion to the
“Microbiome datasets are compositional: and this is not
optional.” review article. This document is necessarily
more technical than the review. It contains interspersed

markdown and R code that is compiled into a pdf docu-
ment and supports the figures and assertions in the main
article. R code is not exposed in the pdf document but
is referred to by R code block in the text so that the
interested reader can work through the example code
themselves.

Reproducing the analysis

From an R command prompt you can compile this docu-
ment into PDF if you have LATEXand pandoc installed:

rmarkdown::render('Frontiers_supplement.Rmd')
or you can open the file in RStudio and compile in that
environment.

We will use a subset of the Human Microbiome Project
(HMP) oral microbiome dataset and will be comparing
samples from attached keratinized gingiva (ak) with outer
plaque biofilm (op) included in the CoDaSeq R package.
The HMP dataset is exceedingly sparse (contains many 0
values), and has wide variation in read depth: this makes
the dataset a good stress test for the method.

R packages required

We will need the following R packages and add-ons
(R_block_1).

1. knitr (CRAN)
2. CoDaSeq (https:github.com/ggloor/CoDaSeq)
3. ALDEx2 (Bioconductor)
4. zCompositions (CRAN)
5. igraph (CRAN)
6. grDevices (CRAN)
7. car (CRAN, loaded with ALDEx2)
8. propr (CRAN)
9. vegan (CRAN)
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Standard and compostional work-
flow
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Figure 1: Standard and compositional methods to analyze
the microbiome.

The standard microbiome analysis, illustrated in Figure
1, is initiated by normalizing the reads to a common
sequencing depth. Historically normalization was per-
formed by rarefaction, but increasingly uses the method
of count normalization from the DESeq package (Weiss et
al., 2017). The results of the standard analysis pipelines
strongly depend upon the read depth without normal-
ization. The compositional replacement is to covert the
data to ratios, generally using the centred log-ratio but
other approaches are possible (Aitchison, 1986; Gloor
et al., 2016c). Downstream methods using a log-ratio
approach are affected minimally by read depth, unless
the difference in depth between samples is egregious. The
usual next step is to determine distances between samples
for β-diversity, ordination and multivariate comparison.
The standard approach offers a rich choice of distance

and dissimilarity metrics, largely because no single met-
ric captures the data completely. There is considerable
uncertainty regarding the appropriate metric (Weiss et
al., 2017). In contrast, the compositional approach offers
the Aitchison distance metric, which is an appropriate
and consistent metric (Aitchison et al., 2000, Martín-
Fernández et al. (1998)). This simplifies the downstream
analyses and prevents ‘distance-metric hacking’ whereby
different metrics are used for different purposes (Wong
et al., 2016). Exploratory data analysis and multivariate
comparison between groups in the standard approach uses
a Principle Co-ordinates Analysis which is based on iden-
tifying relationships between samples using the distance
metric(s) calculated in the previous step. PCoA can be
very powerful, but care must be taken to ensure that
the results are not simply driven by the most abundant
taxon, gene or OTU in the analysis (Gorvitovskaia et al.,
2016). In contrast, ordination in the compositional ap-
proach is driven by the genes, OTUs or taxa that have the
largest variation in the dataset (Aitchison and Greenacre,
2002). Furthermore, plotting using PCA biplots has the
added benefit of displaying the relationships between the
samples and the features in the samples on one plot. In
a compositional analysis the Aitchison distance can be
used as a drop-in replacement in the multivariate compar-
ison step. Any of the standard correlation strategies are
wrong for these data (Lovell et al., 2015), and there are a
number of methods described below that may be useful.
We suggest the use of the ρ metric (Erb and Notredame,
2016), or other compositional approaches. Many tools are
available to estimate which features exhibit differential
relative abundance in these datasets. They have many
different characteristics and often generate many false
positives, but the compositionally appropriate ANCOM
and ALDEx2 are generally less prone to these problems
than are the non-compositional approaches (Thorsen et
al., 2016; Weiss et al., 2017)
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Log-ratio transformations

There are three main log-ratio transformations; the addi-
tive log-ratio (alr), centred log-ratio (clr) and the isomet-
ric log-ratio (ilr) (Pawlowsky-Glahn et al., 2015).

Given an observation sample vector ~x of D ‘counted’
features (taxa, operational taxonomic units or OTUs,
genes, etc.) ~x = [x1, x2, ...xD]:

The alr is the simply the elements of the sample vec-
tor divided by a presumed invariant feature, which by
convention here is the last one:

~xalr = [log(x1/xD), log(x2/xD) . . . log(xD − 1/xD] (1)

This is similar to the concept used in quantitative PCR,
where the relative abundance of the feature of interest is
divided by the relative abundance of a (presumed) con-
stant ‘houseskeeping’ feature. Of course there are two
major drawbacks. First, that the experimentalist’s knowl-
edge of which, if any, features are invariant is necessarily
incomplete. Second, is that the choice of the (presumed)
invariant feature has a large effect on the result if the
presumed invariant feature is not invariant, or if it is
correlated with any other features in the dataset. Inter-
estingly, an early proposal was to use the geometric mean
of a number of internal controls (Vandesompele et al.,
2002), leading to the next transformation.

The centered log-ratio (clr) transformation introduced
by (Aitchison, 1983,Aitchison (1986)) uses the geometric
mean of all features as the denominator:

~xclr = [log(x1/G(~x)), log(x2/G(~x)) . . . log(xD/G(~x))],
G(~x) = D

√
x1 · x2 · ... · xD (2)

where G(~x) is the geometric mean of ~x.

The clr is often criticized since it has the property that
the sum of the clr vector must equal 0. This constraint
causes a singular covariance matrix; i.e., the sum of the
covariance matrix is always a constant (Pawlowsky-Glahn
et al., 2015). However the clr has the advantage of being
readily interpretable, a value in the vector is its abundance
relative to a mean value.

The ilr is the final transformation, and is a series of
sequential log-ratios between two groups of features. For
example, the philr transformation is the series of ratios
between OTUs partitioned along the phylogenetic tree
(Silverman et al., 2017), although any other sequential
binary partitioning scheme is also possible (Pawlowsky-
Glahn et al., 2015). The ilr transformation does not
suffer the drawbacks of either the alr or clr, but does

not allow for insights into relationships between single
features in the dataset. Nevertheless, ilr transformations
permit the full-range of multivariate tools to be used, and
are recommended whenever possible.

The ilr and clr are directly comparable in a two important
ways: First, the distances between samples computed us-
ing an ilr and clr transformation are equivalent. Second,
the clr approaches the ilr in other respects as the num-
ber of features becomes large. In this respect, the large
number of features — hundreds in the case of OTUs,
thousands in the case of genes — in a typical experiment
works in our favour. Thus, while not perfect, the clr is
the most widely used transformation. However, care must
be taken when interpreting its outputs since single fea-
tures must always be interpreted as a ratio between the
feature and the denominator used for the clr transforma-
tion. The problems of using clr are apparent when some
subcomposition or group of taxa is analysed for further
insight since the geometric mean of the subcomposition is
not necessarily equal to that of the original composition,
leading to potential inconsistencies.

Log-ratio values of any type do not need to be normalized
since the total sum is a term in both the numerator and
the denominator. Thus, the same log-ratio value will be
obtained for the vector of raw read counts, or the vector
of normalized read counts, or the vector of proportions
calculated from the counts. Thus, log-ratios are said to
be equivalence classes such that there is no information
in the total count (aside from precision) (Barceló-Vidal
et al., 2001). Attempts to ‘open’ the data are doomed
to failure because the data cannot be moved from the
simplex to Euclidian space. The total count delivered by
the sequencing instrument is a function of the instrument
and not the number of molecules sampled from the envi-
ronment, thus the total count has no geometric meaning.
If the data are collected in such a way that the total
count represents the actual count in the environment,
then the data are not compositional and issues regarding
compositional data disappear. However, at present all
sequencing platforms deliver a fixed-sum, random sample
of the proportion of molecules in the environment.

Note that this does not mean that the read depth is irrel-
evant since more reads for a sample translate into greater
precision when estimating the proportions (Fernandes et
al., 2013,Gloor et al. (2016b)).
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The compositional PCA biplot

The compositional PCA biplot (Aitchison, 1983, Aitchi-
son and Greenacre (2002)) made by a Singular Value
Decomposition of the CLR-transformed data is normally
the first exploratory tool used to examine the dataset
(R_Block_2). The quantitative information from the asso-
ciation and differential abundance tests can be obtained,
in a qualitative manner, from the initial PCA plots them-
selves.
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Figure 2: Compositional biplot generated from the CLR
transformed OTU values with 0 replacement. The biplot
is shown with scale=1, projecting the distances between
samples onto the 2-D image as best as possible. The
distance between OTUs (red) is a measure of their com-
positional association, but this is only a crude measure
relative to ρ.

We have previously given extensive guidance on the inter-
pretation of these plots for microbiome data (Gloor et al.,
2016c), but in general the large numbers of variables and
the small number of samples often obscures important
relationships. Thus, we prefer to plot the loadings and
the sample relationships separately, and functions are
provided for this in the CoDaSeq package.
When we plot the individual OTUs separately as in Figure
3 (R_Block_3) on a loadings plot the resulting plot con-
tains qualitative information on both differential relative
abundance of OTUs and on association between OTUs.
The distance and direction of OTU from the center of
the plot is proportional to the standard deviation of the
CLR value of that OTU in the dataset (Aitchison and
Greenacre, 2002). In theory, OTUs that have a short
link between them, (i.e., are nearly the same direction

and distance from the origin) should be compositionally
associated. However, our ability to make this conclusion
is tempered by the proportion of variance explained by
the first two principle components, and in practice at
least 90% of the variance needs to be explained for a high
confidence determination. Thus, the compositional PCA
biplot, or the loadings plot itself, should be used mainly
for display, and the numerical differential relative abun-
dance and compositional association measures should be
used for quantitative insights.
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Figure 3: Plot of the relationship between the OTUs from
the SVD. Here each OTU is colored red if it was identified
as having an effect size greater than 1. The two OTUs
with the ρ value closest to one are highlighed in blue. See
later sections for an explanation of effect size and ρ.

4



Similarly, we can plot the individual samples in Figure
4 (R_Block_4), with the ak samples in red, and the op
samples in blue. Here the distances between points is pro-
portional to the Euclidian distance of the CLR vectors of
the samples. This is referred to as the Aitchison distance.
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Figure 4: Plot of the individual samples from the SVD
output, with the ak samples in red, and the op samples in
blue. Here the distance between points is proportional to
the Euclidian distance of the CLR vectors of the samples.
This is referred to as the Aitchison distance.

Similarly, we can calculate an Aitchison distance matrix
as in R_Block_5 to generate the dendrogram in Figure 5
with sample names colored red or blue depending on if
they fall within the op group, or the ak group. Note that
op_024146 falls completely within the ak group in the
dendrogram. This is in accordance with the biplot which
shows the same partitioning.

The multivariate distance between samples can be esti-
mated using the Aitchison distance and the significance
calculated using the vegan anosim function (R_Block_5).
That is, the Aitchison distance can be used as a drop-in
replacement for other distance or dissimilarity metrics
used in the microbome literature. The Aitchison distance
is compatible with compositional assumptions. By this
test, the op and ak samples have a significantly different
composition (P < 0.001).
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Figure 5: Dendrogram plot of the individual samples from
distance matrix output. Samples from op are colored in
blue, and ak are coloured in red.
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Table 1: Counts

A B C D E
s1 10 20 20 50 50
s2 15 40 30 20 200
s3 20 80 10 30 15

Correlation

The problem of spurious correlation

Spurious correlation arises when data are constrained
by a constant denominator; that is data that are repre-
sented as proportions, percentages, probabilities, relative
abundances, etc (Aitchison, 1986). Understanding the
correlation problem is crucial since spurious correlation
is the basis for essentially all data analysis anomalies as-
sociated with compositional data. The problem has been
recognized since the beginning of statistical practice as
noted by the quote from a paper by Karl Pearson [1897]:
“if the ratio of two absolute measurements on the same
or different organs be taken it is convenient to term this
ratio an index.
If u = f1(x, y) and v = f2(z, y) be two functions of the
three variables x, y, z, and these variables be selected at
random so there exists no correlation between x, z, y, z, or
z, x, there will still be found to exist correlation between
u and v. Thus a real danger arises when a statistical
biologist attributes the correlation between two functions
like u and v to organic relationship . . . ." (Pearson, 1897)

This problem exists whenever there is a constant
sum or denominator in a dataset: proportion,
percentage, ppm, etc, or equivalently, when the
dataset cannot have an infinite sum as happens
in hight throughput sequencing datasets.

Numbers and proportions are very differ-
ent

Before we examine correlation in the large HMP dataset,
we will illustrate the problem of correlation and composi-
tionality in a small, easily understood dataset generated
in R_block_6 and displayed in the tables at the top of
the page. Assume first that we are dealing with numbers
and there are three samples (s1, s2, s3) each with five
features (A-E).
Tables of numbers (Table 1), proportions calculated from
the complete dataset (Table 2), and proportions calcu-
lated from the dataset with variable E removed (Table
3). This last situation is called a sub-composition and
is a common operation when dealing with high through-
put data. For example, rRNA and tRNA are usually

Table 2: Proportions

A B C D E
s1 0.067 0.133 0.133 0.333 0.333
s2 0.049 0.131 0.098 0.066 0.656
s3 0.129 0.516 0.065 0.194 0.097

Table 3: Subset Proportions

A B C D
s1 0.100 0.200 0.200 0.500
s2 0.143 0.381 0.286 0.190
s3 0.143 0.571 0.071 0.214

removed physically or computationally prior to analysis
of transcriptomic datasets, and 16S rRNA gene sequenc-
ing datasets include only those taxa that can have their
DNA extracted and amplified.

Note that the values represented as numbers, as pro-
portions of the whole, and as proportions of the first 4
variables are different. For example, numerically s2D = 20
and s3D = 30, but proportionally these values are 0.066
and 0.194 in the whole proportional dataset and 0.19
and 0.214 in the subset proportional dataset. Thus, the
absolute difference between values is not stable. However,
the ratios of the parts remains intact. That is:

s1A/s1B = 1
2 = 0.067

0.133 = 0.1
0.2 = 0.5

as counts, proportions of the whole, and proportions of
the subset..

If we calculate the correlations for feature A from the
whole, from a subset, from the whole as proportions,
and a subset converted to proportions we see how the
correlations can be affected by these changing values in
Table 4. Here we observe that the correlations between
features can change in both magnitude and in sign by an
alarming amount.

Table 4: Correlation metrics designed for real numerical
data such as Pearson or Spearman correlation coefficients
are not reliable in compositional data

B C D E
S all 1 -0.5 -0.5 -0.5
S sub 1 -0.5 -0.5
P all 1 -0.5 0.5 -1
P sub 0.9 0 -0.9
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Spurious correlation in action

In Figure 6A, the same count data set (absolute abun-
dances) is presented (5 features, 3 samples), and feature
D is plotted vs feature A as numbers, as proportions with
all features present (Fig 6B) and as proportions with
feature E removed (Fig 6C). We can see how converting
to proportions changes the relationships between features.
This trivial example shows that absolute abundance data
and the relative abundance data do not provide equal
correlations on the parts in common, and thus that ap-
proaches advocated in the literature that do not account
completely for compositionality can be inaccurate (Mc-
Murdie and Holmes, 2014, Weiss et al. (2017)). Later
we show that the Spearman’s correlation is not stable
when real data are subset and that Pearson correlation is
susceptible to false positives.

Figure 6 plots A vs D from the three tables and display
the Spearman’s and Pearson’s correlation coefficients; the
code is in R_block_7.
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Figure 6: Plots of A vs D for numbers, proportions and
proportions from the subset where the last column was
dropped. We can see that the relationship between the
data points is not the same for the numerical and pro-
portional data and that the relationship changes again
when the proportional data are subset. This is spurious
correlation because we see there is an unpredictable cor-
relation observed between two variables whenever they
share a common denominator.
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Geometric intuition of correlation of com-
positional data

We usually think of correlations as linear relationships
of the type y = mx+ b, and measure correlation coeffi-
cients as a standardized covariance relationship. However,
this approach does not work when analyzing correlations
of compositional data regardless of the transformation
(Lovell et al., 2015).

The negative correlation bias

The variables in compositional data have a negative cor-
relation bias. This is obvious in the case of a coin toss,
where intuitively we know that the the observation of a
fraction of heads, h must be associated with a fraction of
tails equal to 1− h. This also occurs in the multivariate
case, where any observation of the fraction of the number
6, s, from a number of rolls of a die, must correspond with
the fraction of the other rolls of 1−s. Thus there must be
at least one and possibly many negative correlations be-
cause of the structure of compositional data, the
problem is that there is no theoretical method to distin-
guish those negative correlations that arise structurally
from those that are true negative correlations driven by
the underlying process (Lovell et al., 2015).

The problem of positive correlations

Positive correlations are generally observed whenever two
features have a simple linear relationship. However, com-
positional data must have a constant ratio relationship
to be correlated (Lovell et al., 2015), and this is a subset
of what would be discovered using Pearson or Spearman
correlations.

Thus, when examining compositional data two variables
(or groups of variables) must have a constant ratio rela-
tionship in Euclidan space. In other words, if we plot x
and y on a scatter plot they will lay on a line project-
ing from the origin. Such a line fulfils the linear model
y = mx. We can see this in the Figure 7 “Euclidian”
where the red and the black variables have a line of best
fit that pass through the origin. However the blue vari-
ables have an intercept of 20. All three of these have
an equivalently high Pearson and Spearman correlation
coefficient. In the “Log” plot, the red and black points
fall on lines with slope 1, but the blue line does not.
Thus, while the blue variables have a high correlation,
they are not compositionally associated since the ratio is
not constant (Lovell et al., 2015). The code for Figure 7
is in R_block_8.
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Figure 7: The Euclidian and Log plots show that data on
a line with an intercept do not maintain a constant ratio.
Two variables (in red or black) that have a constant ratio
will be linear and pass through the intercept in Euclidian
space, and will have a slope of 1 on a log-log plot, we can
see that the blue line with an intercept of 2 is neither
linear, nor does it have a slope of 1.

Interpretation of Figure 7

1. note that any pairs of variables that have a constant
ratio appear on a line projecting from the origin in
Euclidian space. The red and black variables are in
constant ratio, but the blue variables are not.

2. Constant ratio relationships cannot have an intercept
in Euclidan space plots because the constant ratio
between features is not preserved. This becomes
obvious as a non-linear relationship in log-space

3. Constant ratio relationships can have a slope 6= 1
in Euclidian space, the slope becomes the intercept
when plotted on a log-log scale.

4. Familiar measures of correlation do not require an
intercept of 0

5. False positive correlations are thus an issue when
observing either positive and negative correlation but
for different reasons.
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Probability and expected values

Imputing 0

High throughput sequencing data appears to deliver
counts per genetic fragment in each sample (the ge-
netic fragment can be a targeted amplicon or a short
RNA or DNA sequence fragment). However, this is
a myth: the sequencing instrument can only de-
liver a fixed number of sequence reads, and so the
data are constrained to a constant, arbitrary sum.

The process that generates the reads is to take a random
sample from the environment, make a library and take a
random sample of the library and sequence it. The num-
ber of molecules in the environment and in the library
is substantially greater than the number of molecules
sequenced, making sequencing a multivariate Poisson
sampling process (Fernandes et al., 2013). Thus, it is
more proper to think about each count as a probability p
of observing the count for each genetic fragment condi-
tioned on the total sequencing depth and the underlying
frequency of the molecules in the environment. That is:
for the jth random vector of counts from the environment,
~sj :

~sj = [s1, s2 . . . sD]

we wish to determine the underlying frequency fij of
the ith molecule in the jth environment, which is propor-
tional to the probability of sampling the ith molecule from
that environment. A vector of the maximum likelihood
estimates of the underlying probabilities is:

~pj = [p1 . . . pD] = ~sj

αj
;αj =

∑
~sj (3)

~pij = (~sij |fij)
αj

(4)

The uncertainty of measurement of ~pij depends directly
on fij and inversely with αj . As fij approaches or be-
comes smaller than 1/αj (i.e., as ~sij → 0), the uncertainty
of ~pij becomes very large indeed (Jaynes and Bretthorst,
2003, Fernandes et al. (2013)). Thus, the maximum
likelihood estimate of the probability vector (and the
corresponding count vector) can be exponentially wrong
when the data are sparse (Newey and McFadden, 1994).
Indeed, we observe a very large amount of variation in
technical replicates (Fernandes et al., 2013, Gloor et al.
(2016b)).

Instead of attempting to identify a point estimate of
the probability vector, we adapt standard Bayesian ap-
proaches to estimate the probabilities by making the
assumption that the nucleotide fragments are derived as

a multivariate Poisson random sample of the underlying
environment (Fernandes et al., 2013). Within this frame-
work we generate k random instances of the probabilities
by drawing from the Dirichlet distribution to generate an
estimate of the posterior distribution of the underlying
probabilities.

Pj,1...k =


~pj1
~pj2
...

~pjk

 =


p11 p21 pi1 . . . pD1
p12 p22 pi2 . . . pD2
...

...
... . . . ...

p1k p2k pik . . . pDk


∼ Dirichlet(1...k)(~sj + 0.5) (5)

Each of the k random instances of the posterior distribu-
tion is a probabilistic estimate of the data, given the ob-
served vector of counts ~sj . In the case where the ~sij = 0,
Pi,j,1...k contains many non-0 estimates of the probability
of ~sij each of which is an equally valid estimate of the
probability of that value. Similarly, if ~sij is non-0, Pi,j,1...k

contains many estimates of that probability.
A distribution of centered log-ratio values Cj,1...k can
now be calculated since all values are non-0, these are
calculated row-wise, i.e. for the kth row:

Cjk = log(pi,j,k)−mean(log(Pjk)) (6)

At this point, each value in the vector ~sj has been used to
generate a distribution of centered log-ratio (CLR) values
where no log-ratio calculation included a 0 value, but a
value of 0 could approach 0 with an arbitrary probability.
Thus, the distribution of CLR values are wide near the
low count margin, and when α is small, and become
progressively narrower otherwise. While the Dirichlet
distribution is not a good null model for compositional
data because it makes strong assumptions of independence
(Aitchison, 1986), it is an adequate model to generate the
posterior distribution of probabilities derived from count
compositional data (Fernandes et al., 2013, Gloor et al.
(2016b)).

Why expected values are useful

Any univariate test statistic of OTUs or genes (differen-
tial relative abundance, compositional association, etc) or
multivariate statistic can be calculated across the distribu-
tion and an expected value derived. Since the distribution
is wide at the low count margin, there is a large stochastic
effect on the calculated test statistic, and the expected
value will tend towards the middle of the distribution of
that test statistic (i.e, a p-value will tend towards a value
of 0.5). Conversely, since the distribution is narrow when
~sij is not trivial, the expected value of the test statistic
will have a smaller stochastic influence.
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The expected value ρ: E(ρ):

The ρ metric is a replacement for a correlation coefficient,
and is based on scaling the variance matrix, an approach
first conceived by (Lovell et al., 2015). Lovell et. al,
suggested φ, where 0 denotes perfect association.

φxy = V ar(clr(x)− clr(y))
V ar(clr(x)) ,∈ 0,+∞ (7)

or the geometric equivalent:

φxy = 1 +m2 − 2m|r| (8)

where m is the slope and r is the correlation coefficient.
φxy can be modified to be symmetrical and scaled by a
modification of the formula and the new metric is called
ρ (Erb and Notredame, 2016):

ρxy = 1− V ar(clr(x)− clr(y))
V ar(clr(x)) + V ar(clr(y)) ,∈ −1, 1 (9)

or the geometric equivalent:

ρxy = 2r
m+ 1/m (10)

The φ and ρ metrics are expected to be subcomposition-
ally coherent, that is, either metric is expected to have
the same value for pairs of features in common if the
entire dataset is examined or any reasonable subset of the
OTUs in the dataset is examined. In the context of high
throughput sequencing, this expectation is only true for
non-sparse data. However, the expectation may not be
true for sparse data where 0 values must be imputed, or if
extremely small numbers of OTUs are examined. Figure
8 shows four measures of association between two OTUs
with all others that are present in both an entire and a
subset dataset drawn from the HMP oral dataset. Note
that the Spearman correlation coefficient is not consistent
and that the point estimate of ρ is much more consistent
than is the Spearman correlation coefficient. The point
estimate of ρ is not identical because of sparsity; the point
estimate of 0 is not identical between the whole dataset
and the subset. However, observe that the E(ρ) is essen-
tially consistent in the whole dataset when compared to
the subset dataset. This reproducibility becomes more
consisent with more Dirichlet Monte Carlo Replicates,
and the reader can modify the code in R_block_1 and
R_block_9 to demonstrate that increasing the number of
DMC intances 100-fold will result in a much tighter E(ρ)
relationship, although at a cost of time to calculate. The
propr documentation contains additional information on
how to interpret the results. R_block_1 contains the cal-
culations and R_block_9 contains the plotting commands
for Figure 8.
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Figure 8: Measures of association should be stable to
subsetting the data. The Spearman and Pearson correla-
tion coefficients, point estimates of ρ and E(ρ) are shown
for OTU number 11 or OTU number 39306 to all other
OTUs calculated on log-ratio transformed values (clr),
from the subset of the HMP oral microbiome dataset.
The all features axis contains all OTUs in the calculation
and the remove 5 axis is the same calculation performed
with five OTUs removed. E(ρ) was calculated with 256
Dirichlet Monte-Carlo instances. We see that the Spear-
man correlation coefficient is unstable even in a dataset
containing hundreds of OTUs, just like it was in Figure
6. The Pearson correlation coefficient is also unstable,
but less so, and is strongly biased towards having a few
extremely high correlation values, most of which will be
false positives for the reasons outlined in Figure 7 and
illustrated in Figure 9.
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Table 5: The E(ρ) metric for selected OTU pairs.

OTU 1 OTU 2 E(rho)_all E(rho)_r5
38349 26584 0.684 0.691
30378 29014 0.669 0.678
38802 31478 0.689 0.674
38193 35952 0.69 0.689
39306 39235 0.792 0.791

At present we must examine the linear relationship be-
tween two variables when a value of ρ is not trivially near
to 1. Table 5 shows five association pairs with high E(ρ)
values. Note that the expected value is similar in the
complete and remove 5 dataset. The ρ metric is attempt-
ing to summarize both the slope and linearity of any
relationship between the values into one number, so that
a better Pearson correlation coefficient can be offset by a
poorer fit to a linear line of slope 1. Figure 9 plots several
associations, from Table 5 to show the slope and scatter
around the line of best fit. We see that the associations
between the OTUs given as examples in Table 5 are good
fits to the assumption. R_block_10 contains the code
to generate the table, R_Block_11 contains the code to
generate Figure 9.

Figure 8 demonstrated that the Pearson correlation also
appeared to be reproducible in compositional data. How-
ever, as noted above, the Pearson correlation can include
many false positive correlations. The bottom two panels
in Figure 9 plot the relationship between the Pearson r
value and the E(ρ) values for the HMP dataset, and the
slope and association for one pair. Here we observe that
there are many high r values with modest or low E(ρ)
values, and the particular one shown in red in the bottom
left panel is plotted in the bottom right panel. Thus, we
find that a high Pearson r value can be a false positive
since the two OTUs are not necessarily in constant ratio.
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Figure 9: Plots showing the associations between two
OTU pairs with the ρ value taken from the table (top
two panels), and one OTU pair that has a high Pearson
correlation coefficient but low E(ρ) value (bottom two
panels). The dashed blue lines show the ideal line of
slope 1, the dashed red lines show the line of best fit to
the data. The ‘11 vs. 37246’ pair is correlated but is not
compositionally associated and the relationship between
the Pearson correlation and E(ρ) and Pearson correlation
for this pair of variables is highlighted in the bottom left
panel. The association between these OTUs plotted in
the bottom right panel, showing that this association is
a false positive identified by Pearson correlation.
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Differential relative abundance with
ALDEx2

ALDEx2 measures differential (relative) abundance as cal-
culated by an expected p-value, an expected Benjaminin-
Hochberg adjusted p-value and as an expected stan-
dardized effect size (Fernandes et al., 2014, Gloor et
al. (2016a)). The latter is a much more robust estimate,
and should be used whenever possible since a standard-
ized effect size is a much more reproducible metric of
‘significance’ than is a p-value (Halsey et al., 2015).

We use effect plots for display purposes because they
show the relationship between difference and dispersion
(Gloor et al., 2016a) which are the constituents of p-
values, but are not scaled by the number of samples. We
can see in Figure 10 that the majority of OTUs in the
HMP dataset have much more dispersion (within group
variation, analogous to the standard deviation) than they
do between group difference. In fact, the majority of
OTUs have a dispersion value greater than 23 = 8 but less
than 4-fold different relative abundance between groups.
Clearly, even a low p-value is meaningless in this situation.
The OTUs with greater difference than dispersion are
indicated by the red points in the plot. The second plot,
E vs. P, shows the relationship between the standardized
effect and p-value. R_Block_12 contains the code for
Figure 10, values were calculated in R_block_1.
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Figure 10: The effect plot shows a scatter plot of the
difference between the relative abundance of OTUs in
groups 1 and 2 plotted vs. the maximum dispersion of the
OTU in either group: each point is an individual OTU.
We can see that the dispersion for most OTUs is much
greater than the difference between groups, essentially
indicating that the variation within each group is larger
than the difference between groups. Points are colored in
blue if the expected Benjamini-Hochberg false discovery
rate (FDR) value is less than 0.05, and circled in red if
the absolute expected standardized effect size is ≥ 1. The
E vs p plot shows the relationship between effect size and
the false discovery rate. The effect size will be relatively
stable regardless of the sample size, while the FDR will
depend upon sample size.

Table 6: OTU genera with large effect size differences.

Veillonella
Actinomyces
unk
unk
Neisseria
Neisseria
Gemella
Lautropia
Veillonella
Selenomonas
Actinobacillus
Capnocytophaga
Streptococcus
Prevotella
Prevotella

The table shows differentially abundant OTUs in this
dataset with an absolute effect size ≥ 1 and the genera
they belong (R_Block_13):

The ALDEx2 documentation has additional information
on the meanings of the test statistics and how to access
and explore the data.
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Summary

• compositional data are any positive data in which
ratios between components are relevant. The sum of
components can be constant along the sample or it
can be irrelevant.

• it is useful to think of the count associated with
an OTU or gene obtained through high throughput
sequencing data as a probability conditioned on the
underlying frequency in the environment scaled by
the total read depth of the sample

• data generated by high throughput sequencing are
compositional because the machine constrains the
total count

• the relationship between the parts (OTUs, genes) is
the only information available

• the data cannot be opened and so the data lay on
a simplex: i.e., the data cannot be returned to the
same space as the observations in the underlying
environment

• a Bayesian estimate of the frequency can be used to
generate expected values of test statistics

• any simplex is always equivalent to the unit simplex
• “in the absence of any other information or assump-

tions, correlation of relative abundances is just wrong”
(Lovell et al., 2015). Thus we must examine two num-
bers, slope and correlation (Egozcue, submitted)
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